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Propagation of water waves over an infinite step 

By J. N. NEWMAN 
David Taylor Model Basin, Washington, D.C. 

(Received 17 December 1964 and in revised form 9 April 1965) 

Theoretical and experimental results are presented for the reflexion and trans- 
mission of water waves, passing over a step bottom between regions of finite and 
infinite depth. Two-dimensional motion is assumed, with the wave crests parallel 
to the step, and in the theory linearized irrotational flow is assumed. By matching 
‘ wavemaker’ solutions for the two regions at the cut above the step, an integral 
equation is derived for the horizontal velocity component on the cut. This integral 
equation is solved numerically and the reflexion and transmission coefficients 
and associated phase shifts are obtained. These results are compared with the 
long-wave theory and significant frequency effects are found, even for quite long 
waves. Experimental results are presented, which are in fair agreement with 
the theory. 

1. Introduction 
Problems involving the propagation of water waves in a fluid of variable depth 

can be conveniently divided into three categories: ‘beach’ problems, where the 
depth tends to zero; ‘obstacle’ problems, where the depth is a constant except 
for variations extending over a finite interval in space; and ‘changing-depth ’ 
problems, where the depth changes from one limiting (non-zero) value to a second 
limiting (non-zero) value. There have been many investigations of the beach and 
obstacle problems (c.f. Stoker 1957, or Wehausen & Laitone 1960), but com- 
paratively few studies have been made of the ‘changing-depth’ case. Much of the 
theoretical ground-work exists in the work of Hreisel(1949), but the only detailed 
studies are limited to very special geometries (Roseau 1952), or are based on the 
long-wave approximation (Bartholomeusz 1958 and Sretenskii 1950). The im- 
portance of wave propagation in the case of changing depth is obvious in many 
coastal situations, such as the passage of waves over a continental shelf. As an 
idealization of such a problem, we consider here the case of wave propagation 
over an infinite step, with constant finite depth on one side of the step and 
infinite depth on the other (figure 1). This is the situation treated by Sretenskii 
(1950) for oblique waves, but Sretenskii assumes that the wavelength is large 
compared to the finite depth and the results are not completely consistent. 

The present study is in fact more closely related to that of Bartholomeusz 
(1958), which made more rigorous the solution of Lamb (1932) for long waves 
passing over a finite step, from one constant depth to another. Our situation is 
different in so far as one depth, rather than the wavelength, is considered 
infinitely large, but it will be shown that in the mutual limit of the two problems, 
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i.e. long waves and one infinite depth, our results are consistent. This conclusion 
suggests that in the Lamb-Bartholomeusz problem the wavelength need only be 
long compared with the shallower of the two depths. An obvious further generaliza- 
tion would be to consider the finite-step geometry for finite wavelengths, and in 
fact the necessary analysis is essentially identical with that given in the present 
work. 

One treatment of the obstacle problem which is closely related to our study is 
that of Jolas (1960), who considered the reflexion and transmission of waves 
incident upon a submerged rectangular parallelepiped. While it might seem that 
the infinite step is a special case of the rectangular parallelepiped, with the 
horizontal dimension tending to infinity, this is in fact an over-simplification 
since interference effects will persist between the two ends of the obstacle regard- 
less of its length. However, these interference effects can be analysed, and the 
long obstacle can be treated as a synthesis of two steps placed ' back-to-back'. 
The necessary analysis is presented in a separate paper (Newman 1965). 

Our treatment is based upon the usual assumptions of linearized water-wave 
theory and is restricted to the two-dimensional motion associated with wave 
crests parallel to the step. The fluid is assumed to be ideal, the motion irrotational, 
and the amplitude of the waves small compared with the wavelength and the fluid 
depth. There results a linear two-dimensional boundary-value problem for the 
velocity potential in the domain of the fluid. Assuming incident plane progressive 
waves of known amplitude, this boundary-value problem is reduced to an integral 
equation which is solved numerically for the reflexion and transmission coeffi- 
cients. The analysis is performed for the case of waves incident from the deep 
fluid into the region of finite depth, but following Kreisel(l949) the reflexion and 
transmission coefficients for waves incident from the opposite direction (i.e. from 
the finite depth) can also be found from the relation existing between the two 
problems. 

2. The boundary-value problem 
Let (x,y) be Cartesian co-ordinates, with y = 0 the plane of the undisturbed 

free surface and y being positive downwards (figure 1). The fluid occupies the two 
regions 0 < y < h, -03 < x < 0; 

and o<y<O3, o<x<co. 

Assuming plane progressive waves and linearized theory throughout, the fluid- 
velocity vector may be represented by 

V = Re[e-iutV$(x, y)], 

where $(x,y) is the velocity potential. This potential must satisfy the Laplace 
equation throughout the fluid domain and the following boundary conditions 
(Wehausen & Laitone 1960): 

K$+a$/ay = 0 on y = 0, -03 < x < 03, (2.1) 

a$/ay = 0 on y = h, -03 < x < 0, (2.2) 

a$/ax = 0 on x = 0, h < y < 03, (2.3) 
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and for x > 0 # must be bounded as y -+ co. The first boundary condition is the 
free surface condition and K = c2/9 is the wave-number for plane waves in a 
fluid of infinite depth. In  addition, a radiation condition must be imposed. We 

Kd-t+/& = 0 

Y 

h 

FIGURE 1. The boundary-value problem for the infinite step bottom. 

shall consider, for the time being, the case of incident waves from the deep-water 
side, which are partially transmitted into the shallow water and partially 
reflected back into the deep water. The radiation condition is then 

# -+ #I e-K~-iKx + #R e-Kv+iKx as x +, + a, 
and #-t#,coshK0(y-h)e-iKoo" as x-+-co, 

where 
the equation K = KO tanh KO h. 

The above conditions state that as x +, + co the motion consists of an incoming 
incident wave of amplitude (a/g) plus an outgoing reflected wave of ampli- 
tude (cr/g) I # R I ,  while as x -+ - 00 the motion consists of an outgoing transmitted 
wave of amplitude (crlq) I#T] coshK,h. The coefficient is assumed to be 
known, while q5R and $T follow from the solution of the problem. In  particular, 
the reflexion and transmission coefficients are defined as 

gR, and #T are complex constants, and KO is the real positive root of 

and 

3. Derivation of the integral equation 
To solve the problem stated in the preceding section we shall employ the 

'wavemaker' theory of Havelock (1929), matching solutions valid for x > 0 and 
x < 0 a t  the 'cut' x = 0,O < y < h. Specifically, we assume that on this line the 
horizontal velocity aq5/ax = U(y) is a known complex function. Then the potential 
on each side of the cut can be found immediately from the wavemaker theory, in 
terms of the function U(y), and by matching these two potentials on the cut an 
integral equation is obtained for the function U(y). 

26 Fluid Mech. 23 



402 J .  N .  Newman 

Consider first the region x > 0, 0 < y < 00, and let 

$(x, y) = $I e-Ky-iKx+ $(x, y). (3.1) 

The new potential $ behaves like an outgoing wave at x = + GO and it satisfies the 
free surface condition (2.1). On x = 0 we have the boundary condition 

a$/ax = U(y) + iKq5, e-KY for 0 < y < 00, 

and from (2.3) U(y) = 0 for h < y < GO. 

From Havelock’s wavemaker theory it follows that, for x > 0, 

$(X,Y) = - 2; e-Kv+iKx /om [ U(q)  + iKq51 ecK7] e - Q  dy 

x (k cos ky - K sin ky) (k cos ky - Ksin ky) dk dy 

(k cos ky - K sin ky) (k cos ky - K sin ky) dk dy. 

(3.2) 
Subsituting (3.2) in (3.1) and setting x = O +  , we obtain 

- -  -’ I h  
n o  k(k2+K2) I. 

(k cos Icy - K sin ky) (k cos kq - Ksin Icy) dkdy. 

Proceeding in an analogous manner for x < 0, the potential q5 behaves like an 
outgoing wave a t  x = - 00; it  satisfies the boundary conditions (2.1) and (2.2) on 
the free surface and on the bottom, respectively, and on x = 0 the boundary 

(3.4) 
condition 

a$px = U(y). 

Thus from the wavemaker theory for finite depth, the velocity potential for the 
region x < 0 is 

where k, is the nth positive real root of the equation 

K+k,tank,h = 0. 

The validity of (3.5) is easily checked, for each term separately is a potential 
function satisfying the free surface and bottom conditions; the first term itself 
satisfies the radiation condition while the remaining terms are exponentially 
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small at x = -m; and, finally, the boundary condition (3.4) can be verified by 
differentiating ( 3 4 ,  setting x = 0 - , and noting that the infinite set of functions 

{cash h', (y - h), cos k,(y - h))  

is complete and orthogonal in the interval 0 < y < h. Setting x = 0-  in (3.5) 
we obtain 

We now proceed to match the two solutions at the cut. For this purpose it is 
required that the velocity be continuous across the cut. We have already ensured 
that the horizontal component is continuous since aq5/ax = U(y) on both sides of 
the cut, but there remains the condition on the vertical velocity, 

a 
aY 
- ($+-$-) = 0, on 0 < y < h. 

Then 4+ and 4- can differ only by a constant, and from the free surface condition 
this constant must be zero. Thus our matching condition is 

4+= 4- on O < y < h .  

Equating (3.3) and (3.6) we then obtain the desired integral equation for U(y): 

where the kernel L(y, y) is defined by 

i cash KO (y - h)  cash K,(?;I - h) 
L(y, y) = i ecK(v+7)+ ~~ 

KO h + 4 sinh 2Ko h 

( k  cos ky - K sin ky) (k cos ky - K sin ky) dk 

cos k,(y - h)  cos k,(q - h) 
__-.. +%Zl k,h+4sin2knh (3.8) 

The integrai over k can be evahated from known Fourier transforms, in terms 
of the logarithmic function and the exponential integral 

~ ( x )  = f" etdt/t. 
-m 

Thus the kernel can be written in the form 

cos k,(y - h) cos k,(y - h)  +zl k, h + 4 sin 2k, h (3.9) 

26-2 
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Similarly, the infinite series can be expressed by a logarithmic function plus a 
principal-value integral, following Bartholomeusz ( 1958), but for the present 
purposes there is no advantage in doing so. 

Bartholomeusz has derived the more general integral equation corresponding 
to a finite step, and the kernel (3.9) may be regarded as a special case of Bartholo- 
meusz’s kernel, in the limit of infinite depth on one side. Since (3.7) is an integral 
equation of the first kind it is not immediately obvious that a unique solution 
exists, but in fact the necessary proof has been obtained, by transforming (3.7) 
into a regular Fredholm equation of the second kind, the solution of which exists 
and is unique at least for sufficiently small values of Kh. The details follow 
directly from the corresponding proof of Bartholomeusz, and are not considered 
to be of sufficient interest to include here. 

4. Numerical solution of the integral equation 
In  order to find numerical solutions of the integral equation (3.7) we expand 

the unknown function U(7)  in terms of the complete orthogonal set of functions 
corresponding to the wavemaker theory in finite depth. Thus 

U ( 7 )  = U,cosEn(7-h) for 0 < 7 < h, (4.1) 
n=O 

where the unknown coefficients U, are in general complex, and where for com- 
pactness we have introduced the new constant 

k,  = X,. (4.2) 

Substituting the expansion (4.1) in the integral equation (3.7) and interchanging 
the orders of summation and integration, we obtain 

(4.3) 

Multiplying both sides by cos k,(y - h)  and integrating over the interval 0 < y < h, 
we then obtain the infinite system of simultaneous equations 

5 unJhSh cos IC, (y - h) cos kn(y - h)  ~ ( y 7  7) d7 dy 
n=O 0 0 

= ~I/~e-~*cosk,(y-h)ciy (m=O, 1,2,  ...I. (4.4) 

The integrals in (4.4) can all be evaluated, in terms of elementary functions or 
sine, cosine, and exponential integrals. It can be shown that 

1 
[log (kn/k,) + Ci(2kmh) - Ci(2knh)] ,  

+ 377(kk - E;) 
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and, for m = n,  

z ( x )  = j x  el&,%, Si(x) = 
-m /OX 

sintdt/t and Ci(x) = - 

This system of equations (4.4) is complex, and thus represents two coupled 
systems of real equations. These can be uncoupled by straightforward linear 
transformations of the unknown coefficients, but the algebraic details are rather 
cumbersome and will not be pursued here. The resulting pair of uncoupled 
systems has been solved numerically by truncation and standard methods for 
solving a finite system of equations, using the I.B.M. 7090 digital computer. 
In  order to ensure satisfactory convergence of this system the computations were 
repeated for each value of Kh, with successively 10, 20, 40, and 80 terms and 
equations retained. In  the range of Kh between 0.001 and 4 the maximum 
deviation observed was 0.0002 in the magnitude of the reflexion and transmission 
coefficients. The arguments of these coefficients (or the phase angles) converged 
more slowly with a maximum deviation of 1.2" at the highest frequencies, but 
even there the maximum deviation was only 0.1" between 40 and 80 terms. The 
results of these computations are presented in the next section. 

5. The reflexion and transmission coefficients 
The reflexion and transmission coefficients may be found from the asymptotic 

behaviour of +. From equation (3 .2 )  the potential of the reflected wave at 
x = + c o i s  

[+I  - ~i loh ~ ( 7 )  e-Kv dy = +B e - K u + f f i .  I $- g e-KY+iKX 

and the magnitude of the reflexion coefficient is given by 

From equation (3.5) the transmitted wave at  x = -co is 

(5.2) -- - '"O e-iKox cosh K O ( ~  - h)  E & e-iKox cosh KO($ - h). 
KO. 



406 J .  N .  Newman 

and the magnitude of the transmission coe%cient is 

In  a similar manner we can obtain the phase shifts 

and 

The above relations apply to the case of incident waves from the deep region 
x -+ + co. Conversely, we can consider the analogous problem with incident waves 
from the shallow region x -+ - co. Following Kreisel (1949), there exist relations 

arg (T) = 6T = arg (q5T/q3z) = arg (iUo/$z). (5 .5)  

0 

FIGURE 2. Reflexion and transmission coefficients. 

Amplitude of wave transmitted into shallow water 
IT'' = Amplitude of wave incident from deep water ' 

l T z '  = Amplitude of wave incident from shallow water' 
Amplitude of wave transmitted into deep water 

Amplitude of reflected wave 
= Amplitude of incident wave (Ifill = lRzl IRIh 
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between the two problems of the following form; let us denote the two above 
cases by subscripts one and two, respectively. Then Kreisel has shown that 

lRll = lRzl= PI. (5.6) 

JT1T.I = 1 -  IRI2, (5.7) 

STl = ST, ST, (5.8) 

and 6Rl + 6R, = + 26T. (5.9) 

Similarly, it can be shown (Newman 1965) that 

The three coefficients IRI, ITII and ITz] are shown in figure 2,  as functions of 
the non-dimensional frequency parameter cr(h/g)& = (Kh)) .  The corresponding 
phase angles 6Rl, SR, and ST are shown in figure 3. 

One striking feature of figure 2 is the limit ITl/ -+ 2 as Kh -+ 0. Thus for 
sufficiently small frequencies (or shallow depths) the height of the transmitted 

loot- / 

"t / /  

70 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

(Kh)+ = CT(h/g)& 

FIGURE 3. Phase shifts for transmission and reflexion. ST = phase of transmitted wave 
less phase of incident wave (ST, = ST, ST) ; SR, = phase of reflected wave less phase of 
incident wave in deep water; SR, = phase of reflected wave less phase of incident wave in 
shallow water. 
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wave in the shallow region approaches a value precisely twice that of the incident 
wave. This result is explained by examining, in the following section, the asymp- 
totic behaviour of the solution in the limit of low frequency or long waves. 

6. The long-wave limit 
The asymptotic behaviour in the limit of long waves, or small Kh, can be 

obtained either from the integral equation (3.7) or from the simultaneous 
equations (4.4). Utilizing the integral equation, the limit of the kernel (3.9) for 
small K is 

i 1 Y + T  1 +i+-log - --[y+log(Ky+Kq)] 
2n I Y - T i  71 

& A T )  = Th 
a 1  

n=l nn 
+ C -cosnn( l  - y / h ) c o s n n ( l  -r/h)+O([Kh]*), (6.1) 

where we have used the facts that 

Koh = (Kh)*+O([Kh])), 

and Ei(x) = y+logs+O(x), as x -+ 0. 

Here y = 0.577 ... is the Euler-Mascheroni constant. The value of the infinite 
series in equation (6.1) is 

k,h = m + O ( K h ) ,  
- 

- (2n)-llog 12 cos (ny/h) - 2 cos (ny/h)]. 
Thus 

L(y,r) = (2n)-1{ni(K0h)-1+2ni-2logKh-2y 

-log )2cos(ny /h) -2cos(ny /h)~  -log l(y2/h2)-(r2/h2)))+O(h’~h”. 
(6.2) 

Substituting in (3.73, we obtain the integral equation 

where R(y, 7) denotes the real kernel 

R(y,7/) = (2n)-1{-2y-log 12cos(ny/h)-2cos(;rry/h)J -log l(y2/h2)- (T2/F.2)1), 

and the error in (6.3) is a factor 1 + O(Kh). The solution of this integral equation is 

where u(q) is the (real) solution of the normalized integral equation? 

t It can be shown that this solution exists and is unique; see the last paragraph of f 3. 
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Integrating both sides of (6.4), we find that 

= -2iK,h$, [ 1-2Koh-2 in - 'Koh logKh+2i~oh /~~u(7 / )d? / ]  

The constant 

can be computed since it is the flux associated with a streaming flow past the step, 
with a rigid free surface. However, this analysis is not necessary for, since u(7) 
is real, it follows directly that 

4 li/: U(?/)dr)l = 2K0h-4(K0h)'-- 7f ( l i0h)31~gzKh+O(K~h31~gKh) .  

Expanding (5.2) and (5.3) for small Koh, the magnitude of the transmission 
coefficient is obtained as 

IT11 = I$T/$II coshKoh 

(6 .5)  
4 

= 2 - 4(Kh)* - - Kh log2 Kh + O(Kh log Kh). 
7f 

The magnitude of the reflexion coefficient is obtained in a similar manner, 

(6.6) 

(6.7) 

using (5.1), with the result that 

I R I = 1 - 4(Kh)4 + 8Kh + O(K+h# log2 Kh). 
Finally, from (5.7) 

- 4(Kh)* - 8Kh + O(K%s log2 Kh). 
1-  IRI2 

IT,] = ___ - 
IT11 

The asymptotic approximations (6.5)-(6.7) are in good agreement with the 
numerical results shown in figure 2 .  That IRI + 1 as Kh + 0 is not unexpected, 
since the step is tending in the limit to a wall which will be totally reflecting. 
Since the two reflexion coefficients for waves incident from the deep and shallow 
sides of the step are equal, it  follows that, as Kh + 0, waves incident from the 
shallow fluid will also be totally reflected with no energy radiation into the deep 
fluid. The limit T, -+ 0 is an obvious consequence, but the limit IT,I -+ 2 is more 
difficult to understand physically; apparently as Kh -+ 0 the energy transmitted 
into the shallow fluid vanishes at  a rate proportional to the depth h, such that 
the transmitted wave is just twice the height of the incident wave. 

The above limits are consistent with the long-wave theory of Lamb (1932)  for 
the case of a finite step, which has been verified by Bartholomeusz (1958). In  
this theory, if the two depths are h, and h, and both are small compared with the 
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wavelength, then, for waves incident from the depth h,, the transmission and 
reflexion coefficients are 

I T /  = 2(h1/h2)i/1 - (hi/hz)'l, 
and IRI = [1 + ( V 2 ) 4 1 / 1 1 -  (hl/h2)41. (6.9) 

(6.8) 

Letting h, --f co we obtain the limits ITl/ = 2 and IRI = 1, while for h, + 00 we 
obtain the corresponding limits ITz/ = 0 and IRI = 1. 

7. Experimental verification 
An experimental investigation was performed to verify the theoretical results 

obtained above. For this purpose use was made of a small towing tank, approxi- 
mately 15 m in length, 60 em wide, and 60 em deep. This tank was equipped with 
a pneumatic wavemaker at one end, capable of generating sinusoidal waves of 
approximately 20 em to 10 m in wavelength. At the opposite end of the tank 
a step bottom was inserted, consisting of an aluminium platform 6 m long with 
end plates 50 em high, extending across the tank and down to the bottom. The 
depth of fluid above this platform was varied from 3.7 em to 15 em by adjusting 
the water level. Thus in fact the experimental set-up corresponded to a finite- 
step bottom, from a depth of about 60 em to a depth of a few em, but for small 
and moderate wavelengths the 60 em depth is essentially infinite. At the far end 
of the platform a beach was placed to absorb the transmitted waves. This beach 
consisted of several layers of steel mesh screen, 180 em in length and sloping up 
from the platform to the free surface. 

Wave-height measurements were made with a sonic-type wave probe, which 
has been described by Killen (1962). Briefly this probe consists of a spark gap and 
capacitance microphone, situated about 15 em above the free surface. The spark 
gap is excited by a pulse at a frequency of 120 cycles/sec, and the microphone 
responds to the resulting sound generated by the spark after being reflected from 
the free surface. By electronically timing the interval between the generation of 
the pulse and the arrival of the reflected sound wave, a measure of the distance 
to the free surface is obtained, and hence the free surface elevation can be found. 
By amplifying and filtering the resulting signal, and recording this on a standard 
pen recorder, waves of about 1 em amplitude can be measured with a resolution 
of approximately 0.1 mm. This sensitivity was required to avoid the non-linear 
effects associated with higher waves in the shallow water. 

In  order to resolve the reflected and transmitted waves, a technique was 
employed similar to that of Dean &Ursell(l959). Assuming the deep-water wave 
to consist of an incident wave and a reflected wave, the wave observed at different 
points along the tank will vary in amplitude between a maximum, where the two 
components are in phase, and a minimum, where they are out of phase. The 
maximum amplitude observed will thus equal the sum of the two wave com- 

lrmaxl  = l r z l +  IrRI, ponents, or 

while the minimum amplitude observed will be equal to their difference, 

Thus 
and 
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and the magnitude of the reflexion coefficient is given by 

Similarly, if we use the symbol 6 for the shallow-water-wave amplitudes, and 
allow for the presence of beach reflexions, the transmitted amplitude is 

lrTl = i ( l C m a x l +  ICminI), 

and thus the magnitude of the transmission coefficient is 

Moreover, the reflexion coefficient for the beach is 

The procedure adopted consisted of mounting the probe on a towing carriage, 
which was moved up and down the length of the tank at a very slow speed (about 
3 cmlsec). Generally the probe was started near the wavemaker end, in the deep- 
water section, after the wave motion had reached a steady state in this region. 
As the probe moved up through the deep section, measurements of lrmaxl  and 
1rminl  could be obtained; in the vicinity of the step, local effects existed and this 
portion of the record was ignored; then, after passing across the step into the 
shallow water region, measurements of I Cmaxl and l{minl could be found. Generally 
when the probe reached the vicinity of the beach, its motion was reversed and a 
second set of data was obtained from the return trip. In  this way two sets of 
independent data were obtained from each run, and their consistency provided 
an estimate of the steady-state nature of the waves. One of the advantages of 
this wave-measuring system is that only one probe is required, and, since the 
reflexion and transmission coefficients involve only ratios of its signal, no accurate 
calibration need be performed. 

The above procedure is straightforward but does not account for the effect of 
beach reflexions on the measured coefficients. The measured beach reflexion 
coefficient \RBI varied from 0.03 to 0.26, with most values of ]RBI in the range 
0.10 to 0.18. Since the reflexion coefficient from the step is of the same order, it  
was necessary to correct for beach reflexions when these were measurable. The 
effect of beach reflexions can be analysed in the following way, which is basically 
similar to the ‘reversed-time ’ method of Dean & Ursell(l959). In  the notation of 
Kreisel, the measured wave including beach reflexions is 

4 0  = {Ao, Bo; a,, bo). 

Here A and B denote the complex amplitude of the incident and reflected waves 
in the deep region, and a and b denote the complex amplitudes of the transmitted 
and reflected waves in the shallow region. Thus \RBI = Jbo/aoJ is the beach 
reflexion coefficient. The desired potential 

41 = -vl,B,; “190) 
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is free from beach reflexions, and the desired reflexion and transmission 
coefficients of the step are 

and ITl\ = la,/A,[ coshK,h. 
PI = IBl/AlI 

The potential 4, can be constructed by superposition of the measured wave and 
its conjugate, 

4 1  = $0 - ( b O F 0 )  $0) 

so that 
A ,  = A,-  b,B,/ii,, B, = B,- b,B,/i~,, a, = a, - b O 6 , / ~ , ,  

and the desired reflexion and transmission coefficients are 

and 

B, a, - b, A, 
A , a, - b, BO ’ 

cosh KO h. 
A, a, - b,B, 

If we define the measured coefficients 

IRA11 = PO/AOL ITnll = lao/Aol coshKoh, and lRsl = I~o/aoL 

ST = arg (%/4, and recall that 

then after some straightforward reduction we obtain the relations 

pi = pMl - ( I -  p,y) C ~ ~ ( ~ - ~ + ~ S T ) + O ( ~ R ~ ~ ~ )  (7 .6)  

(7.7) and 

where 0 = arg (A,/B,) and 8 = arg (ao/bo). The two angles 0 and 6 are measurable 
from the locations of the maximum and minimum observed wave heights. In  the 
deep section, maxima occur at points x satisfying the relation 

2Kx = 2rm + 0, 

ITII = TJf[l+ [R&fRBI cos (0 - 6 + 26T)I + O( IRBy), 

while minima occur at points x satisfying the relation 

2Kx = 2r(n + 8 )  + 0. 
Similar relations hold for 8 in shallow water, with the wave-number KO replacing 
K .  In  analysing the experimental records several such values of x were read and 
fitted to the above relations by a least-squares technique to find the phase angles 
0 and 6. The theoretical value of 6T was then used to supply the remaining 
information necessary to correct the coefficients R and T, for beach reflexions. 
This process was carried out for all runs where a clean signal was obtained in 
shallow water and judged to contain significant beach reflexions. It should be 
emphasized that the experimental determination of the phase angles 0 and 6 is 
subject to the usual errors occurring in the measurement of phase angles, and this 
is especially true here, since the phase being measured is that of the amplitude 
modulation, rather than the signal itself. 

The experimental values of IRI and ITII are shown in figure 4, along with the 
theoretical curves. With one exception the experimental points are shown in 
pairs, corresponding to the two directions of travel of the probe in each run. The 
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scatter between each pair of points is a measure of the internal consistency of 
each run. The four different depths are shown by different symbols, and double 
symbols superposed denote data points for which a beach-reflexion correction 

0 0 2  0.4 0.6 0.8 1.0 1.2 1 4 

FIGURE 4. Comparison of experimental points with theoretical curves for reflexion 
coefficient IRI and transmission coefficient ITl[. Different symbols denote different fluid 
depths and double symbols superposed denote points corrected for beach reflexion. Long- 
wave limits for each depth, according to the theory of Lamb and Bartholomeusz, are 
indicated by the corresponding symbols located on the ordinate. Points joined by vertical 
lines denote pairs of data taken during the two directions of travel of the probe in each run. 
A, k = 3.8 em; 0, h = 7.6 cm; v, h = 11.4 cm; n, h = 15.2 em. 

has been made. Also shown in figure 4, by the corresponding symbols situated on 
the ordinate, are the long-wave limits obtained from equations (6.8) and (6.9) 
including the effect of finite depth of the deep fluid; these theoretical limit-points 
help in interpreting the experimental behaviour at low frequencies. Generally 
speaking, the agreement between theory and experiments is moderately good, 

(Kh)3 = a(h/g)4 
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with the most serious discrepancies in the extreme conditions of long waves or 
large depth. The most likely sources of experimental error are beach reflexions, 
finite depth in the deep section, and physical irregularities in the tank and 
aluminium false bottom. Regarding the last, the width of the tank varied by 
about 7 mm, with a corresponding gap between the walls and the platform. Also 
the level of the platform, and thus the shallow depth, varied by about 3mm. 
Viscous effects appeared insignificant, as dye pellets confirmed the existence of 
a thin boundary-layer and little appearance of vorticity, even near the edge of the 
step. Non-linear effects were checked by variation of the incident-wave height, 
with no significant results, as long as steep waves in the shallow water were 
avoided. 

8. Conclusions 
We have obtained theoretical values of the reflexion and transmission 

coefficients, including the corresponding phase shifts, associated with propaga- 
tion of waves over a step-shaped bottom where the depth on the deep side of the 
step is infinite. In the limit of long wavelengths these results are consistent with 
the finite-step long-wave theory of Lamb (1932) and Bartholomeusz (1958), im- 
plying that in their analysis it is sufficient to require only that the wavelength be 
long compared with the lesser of the two depths. However, it is clear from our 
results that the long-wave limit is a poor approximation even at quite small 
values of the depth, for at o(h/g)! = 0.2, corresponding to a wavelength 50n or 
157 times the depth of the shallow fluid, the reflexion coefficient is already reduced 
from 1.0 to 0.52, and the transmission coefficient ITII is reduced from 2.0 to 1-37. 
Thus we may expect that, even for relatively long waves entering quite shallow 
water, frequency effects will be important. 

This research was performed at the David Taylor Model Basin, with calcula- 
tions performed on the I.B.M. 7090 digital computer of the Applied Mathematics 
Laboratory. Programming was performed by Mr W. Frank, while Messrs N. G. 
Milihram and B. L. Moore were especially helpful in carrying out the experi- 
mental phase. The author also wishes to express his gratitude to Drs W.E. 
Cummins and T. F. Ogilvie, and Mr V. J. Monacella, for their encouragement and 
support throughout the investigation, and to Dr Richard Holford for pointing 
out an error in the derivation of the long-wave limits. 
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